Skip to content

Lecture 02 - Fundamental Concepts in Optimization

1. Exam Focus(真题对齐)

High-frequency (A 档)

  • Engineering problem formulation (6-step procedure)
    • 2022-2023 Q2(a): formulate antenna design into an optimization problem
    • 2023-2024 Q1(a): list objectives (if any) and constraints (if any) for filter design
    • 2024-2025 Q2(a): define decision variables (how many? type? range?) for a defense optimization tool
  • Objectives vs constraints; feasible/infeasible; comparing solutions (constraint violations)
    • 2022-2023 Q1(d): concepts of objectives/constraints/feasible solutions
    • 2023-2024 Q1(a)(b): objectives/constraints + integrate them (integration handled later, but classification is from this lecture)
    • 2024-2025 Q1(a)(b): number of objectives/constraints; integrate constraints into a single function
  • Multi-objective optimization: domination, non-dominated, PF/PS (PF = F(PS)); compare Pareto fronts
    • 2022-2023 Q1(e): Pareto optimal / PS vs PF / non-dominated
    • 2023-2024 Q2(a)(b): choose multiobjective vs constrained single objective; compare two PFs
    • 2024-2025 Q2(b): compare PFs (minimization)
  • Decision-variable representation (continuous / binary / permutation) + search space
    • 2024-2025 Q2(a): “m or n variables?”, “continuous/binary/permutation?”, “range?”
    • 2023-2024 Q2(c): delivery plan solutions are permutations (representation is prerequisite)

Medium (B 档)

  • Global vs local optimum; local vs global optimization; neighborhood
    • 2022-2023 Q1(b): hill climbing is local search (ties to local optimum & neighborhood)
  • Unimodal vs multimodal
    • 2022-2023 Q1(h): multimodal means >1 local optimum

Low (C 档)

  • Engineering case study details (antenna array, network slicing, etc.)
    • Usually not directly examined; used as modeling examples.

Scoring checklist(本节课拿分点清单,可直接背)

  • Can write the generic optimization form: variables + objective(s) + constraint(s) + search space
  • Can apply the 6-step procedure to translate text specs → math model
  • Can correctly distinguish objective vs constraint
  • Can rank solutions: feasible(可行解) > infeasible(不可行解); infeasible vs infeasible uses violation
  • Can define domination (min/max), identify non-dominated set, and explain PF/PS (+ PF=F(PS))
  • Can compare two Pareto fronts using convergence + diversity/coverage
  • Can state decision-variable representation (continuous/binary/permutation) and ranges

2. Key Concepts(知识点)

A 档(必会)

(A1) 6-step procedure: formulate engineering problems into optimization problems

  1. Identify requirements
  2. Classify requirements to objectives and constraints
  3. Identify decision variables and their properties (type: continuous(连续)/binary(二项分布)/permutation(排列)/...)
  4. Identify search space (ranges / feasible domain)
  5. Identify if there is a starting point
  6. Identify how to obtain objective and constraint values (simulation/measurement)

176494493194517649449368601764944947277

(A2) Objectives vs constraints; feasible space; comparing solutions

  • Decision variables : (X)
  • Objective : optimize (min/max)
  • Constraints : must satisfy (feasible/infeasible)
  • Feasible space : set of all solutions satisfying constraints
  • Comparing solutions (PPT rule)
    1. Two feasible: compare objective
    2. Feasible vs infeasible: feasible is better
    3. Two infeasible: compare constraint violations (smaller violation is better)

1764940681651

(A3) Multi-objective optimization; domination; Pareto front / Pareto set

  • Multiobjective form:max/min f1(x), max/min f2(x),xD
  • Domination (example for maximization; for minimization flip the inequalities):
xy(k, fk(x)fk(y))  (k, fk(x)>fk(y))
  • Pareto-optimal (non-dominated): not dominated by any other solution
  • Pareto set (PS): Pareto-optimal solutions in decision space
  • Pareto front (PF): objective vectors of PS in objective spacePF=F(PS)

1764942248674

(A4) Decision-variable representation + search space

  • Binary : xi{0,1} (feature selection / knapsack selection)
  • Permutation : p is a permutation of {1,,n} (TSP/QAP)
  • Continuous : xRn, each with bounds [li,ui]

B 档(可能考)

(B1) Global vs local optimum; neighborhood

  • Global optimum (max case):x is global optimal xΩ, f(x)f(x)
  • Neighborhood N(x): points considered "close" (definition depends on problem: Euclidean/Hamming/swap)
  • Local optimum: best within (\mathcal{N}(x))

(Old-note image preserved) 1764943819223

(B2) Unimodal vs multimodal

  • Unimodal: single optimum basin
  • Multimodal: multiple local optima (local search can get stuck)

C 档(低频)

  • Case-study-specific domain details (antenna/network slicing/radar features): know they are examples of modeling, not memorization targets.

3. Must-know Formulas / Algorithms(公式/算法模板)

3.1 Constrained optimization template(可抄)

min/maxf(x)s.t.gi(x)0,i=1,m;hj(x)=0,j=1,,rxΩ

3.2 Comparing solutions in constrained optimization(PPT rule)

  1. Feasible vs feasible: compare objective value
  2. Feasible vs infeasible: feasible is always better
  3. Infeasible vs infeasible: compare constraint violation (smaller is better)

(Optional violation scalar you can write if needed)

v(x)=imax(0,gi(x))

3.3 Domination & Pareto (2-objective)

  • (Max case) domination:xy(k, fk(x)fk(y))(k, fk(x)>fk(y))
  • PF/PS relation:PF=F(PS)

3.4 6-step procedure(流程编号,答题直接写)

  1. Requirements list
  2. Objective(s) + constraint(s)
  3. Decision variables + type
  4. Search space/ranges
  5. Starting point?
  6. How to compute objective/constraints (simulation/measurement)

4. Worked Examples(例题与解答)

Note: These are “exam-style” and aligned to past papers’ wording.

A1 Example 1 — Filter design (formulation)

Problem
Given passband and two stopbands specs with S11(dB), formulate min problem with objective & constraints, define xR12, search space Ω, and evaluation method.

Solution :

  • Variables: x=(x1,,x12)R12
  • Objective:minf(x)=maxf[4,7]|S11(x,f)|
  • Constraints:minf[3.3,3.92]|S11(x,f)|3,minf[7.08,7.3]|S11(x,f)|3
  • Search space:xΩ=i=112[li,ui]
  • Evaluation: EM simulation → extract S-parameters → take max/min over bands

Final Answer
Write the above min/s.t. + xΩ + simulation-based evaluation.


A1 Example 2 — Antenna design (formulation)

Problem
Band 1.1–1.7 GHz: require max|S11|14 and maxAR3. Minimize size S(x).

Solution :

minS(x)s.t. maxband|S11(x)|14,maxbandAR(x)3, xΩ

Final Answer
Objective = size; constraints = two band-max specs; x continuous with bounds; simulation gives curves then max over band.


A2 Example 1 — Compare solutions (feasible > infeasible)

Problem
minf(x)=(x1)2, s.t. g(x)=x1.50. Candidates: 0.5, 1, 1.5, 2.

Solution
Compute g(x): only 1.5 and 2 are feasible. Compare feasible by objective:
f(1.5)=0.25, f(2)=12 is best.

Final Answer
Best solution: x=2.


A2 Example 2 — Rank by constraint violations

Problem
Min problem with g1,g20.
A: g2<0, B: feasible, C: both <0. Rank.

Solution
Feasible beats infeasible ⇒ B best.
Among infeasible, compare violation sum v(x)=max(0,gi): smaller v is better ⇒ A better than C.

Final Answer
B > A > C.


A3 Example 1 — Find PF (minimization)

Problem
Given several (f1,f2) points, find non-dominated set.

Solution
Use min-domination: xy if f1(x)f1(y) and f2(x)f2(y) and one strict. Remove dominated points.

Final Answer
Remaining points are PF.


A3 Example 2 — Compare two PFs (8-mark style)

Problem
Two algorithms produce two PFs (min). Compare.

Solution :

  • Convergence: closer to left-bottom is better
  • Diversity: wider coverage + more uniform spacing is better
    Write 3–5 sentences using these keywords.

Final Answer
A complete comment must mention both convergence and diversity/coverage.


A4 Example 1 — Representation & ranges

Problem
Feature selection / TSP / network slicing: specify variable type and range.

Solution :

  • Feature selection: xi{0,1}
  • TSP: permutation of {1,,n}
  • Network slicing: continuous β[0,1]

Final Answer
State variable count (n), type, and range.


A4 Example 2 — Swap neighborhood (permutation)

Problem
For x=(2,3,4,1), list neighbors by one swap.

Solution
There are (42)=6 swaps; list all 6 resulting permutations.

Final Answer
(3,2,4,1), (4,3,2,1), (1,3,4,2), (2,4,3,1), (2,1,4,3), (2,3,1,4)


5. Common Mistakes(易错点,扣分点 ≥10,按重要性排序)

  1. 把“必须满足的规格”误写成目标(却不说明多目标/不写处理方式)
  2. 忘写搜索空间 xΩ 或变量范围(缺“可优化的域”)
  3. 频段指标是向量却没写“max/min over band”(缺“向量 → 标量聚合”)
  4. 可行/不可行比较规则写反(应:feasible > infeasible)
  5. 两个不可行解不比违约程度,反而比目标值(规则错)
  6. Domination 忘了“至少一项严格更好”
  7. min/max 方向搞反,导致 PF 全错
  8. 把 Pareto set 当 Pareto front(PS 在决策空间,PF 在目标空间)
  9. PF 比较只写“算法 2 更好”不给依据(必须写 convergence + diversity/coverage)
  10. TSP/QAP 误用二进制/实数表示且不加可行性约束(表示法错误)
  11. 邻域定义混乱(swap vs adjacent swap;欧氏 vs Hamming)
  12. 把 multimodal 误解成“多变量/多目标”,而不是“多个局部最优”

6. Quick Review(考前 10 分钟速记)

6.1 必背模板(3 行写完建模)

min/maxf(x)s.t.gi(x)0, xΩ
  • 先写:变量(个数/类型/范围)
  • 再写:目标(越大越好 or 越小越好 + 频段用 max/min 聚合)
  • 最后写:约束(必须满足的规格)

6.2 6-step procedure(背到能默写)

  1. Requirements
  2. Objective(s) + constraint(s)
  3. Variables + type
  4. Search space/ranges
  5. Starting point?
  6. Evaluation method (simulation/measurement)

6.3 Constrained ranking(PPT 原规则一句话)

  • feasible > infeasible;feasible 之间比目标;infeasible 之间比违约

6.4 Pareto(两句拿满分)

  • domination:所有目标不差 + 至少一个更好
  • PF:所有非支配点集合;PS 在决策空间,PF 在目标空间,且 PF=F(PS)

6.5 PF 对比(8 分关键词)

  • Convergence(更靠近理想点) + Diversity/Coverage(覆盖更宽、更均匀、不扎堆)